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SUMMARY 
From July 16-to November 8, 2019, the Aida digital libraries research team at the University of Nebraska-Lincoln 
collaborated with the Library of Congress on “Digital Libraries, Intelligent Data Analytics, and Augmented 
Description: A Demonstration Project.“ This demonstration project sought to (1) develop and investigate the viability 
and feasibility of textual and image-based data analytics approaches to support and facilitate discovery; (2) 
understand technical tools and requirements for the Library of Congress to improve access and discovery of its digital 
collections; and (3) enable the Library of Congress to plan for future possibilities. In pursuit of these goals, we focused 
our work around two areas: extracting and foregrounding visual content from Chronicling America 
(chroniclingamerica.loc.gov) and applying a series of image processing and machine learning methods to minimally 
processed manuscript collections featured in By the People (crowd.loc.gov). We undertook a series of explorations 
and investigated a range of issues and challenges related to machine learning and the Library’s collections.  

This final report details the explorations, addresses social and technical challenges with regard to the explorations 
and that are critical context for the development of machine learning in the cultural heritage sector, and makes 
several recommendations to the Library of Congress as it plans for future possibilities. We propose two top-level 
recommendations. First, the Library should focus the weight of its machine learning efforts and energies on social 
and technical infrastructures for the development of machine learning in cultural heritage organizations, research 
libraries, and digital libraries. Second, we recommend that the Library invest in continued, ongoing, intentional 
explorations and investigations of particular machine learning applications to its collections. Both of these top-level 
recommendations map to the three goals of the Library’s 2019 digital strategy.  

Within each top-level recommendation, we offer three more concrete, short- and medium-term recommendations. 
They include, under social and technical infrastructures: (1) Develop a statement of values or principles that will 
guide how the Library of Congress pursues the use, application, and development of machine learning for cultural 
heritage. (2) Create and scope a machine learning roadmap for the Library that looks both internally to the Library 
of Congress and its needs and goals and externally to the larger cultural heritage and other research communities. 
(3) Focus efforts on developing ground truth sets and benchmarking data and making these easily available. Nested 
under the recommendation to support ongoing explorations and investigations, we recommend that the Library: (4) 
Join the Library of Congress’s emergent efforts in machine learning with its existing expertise and leadership in 
crowdsourcing. Combine these areas as “informed crowdsourcing” as appropriate. (5) Sponsor challenges for teams 
to create additional metadata for digital collections in the Library of Congress. As part of these challenges, require 
teams to engage across a range of social and technical questions and problem areas. (6) Continue to create and 
support opportunities for researchers to partner in substantive ways with the Library of Congress on machine 
learning explorations. Each of these recommendations speak to the investigation and challenge areas identified by 
Thomas Padilla in Responsible Operations: Data Science, Machine Learning, and AI in Libraries. 

This demonstration project—via its explorations, discussion, and recommendations—shows the potential of 
machine learning toward a variety of goals and use cases, and it argues that the technology itself will not be the 
hardest part of this work. The hardest part will be the myriad challenges to undertaking this work in ways that are 
socially and culturally responsible, while also upholding responsibility to make the Library of Congress’s materials 
available in timely and accessible ways. Fortunately, the Library of Congress is in a remarkable position to advance 
machine learning for cultural heritage organizations, through its size, the diversity of its collections, and its 
commitment to digital strategy.   
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1 INTRODUCTION 
In response to notice ID 030ADV19Q0274, “The Library of Congress – Pre-processing Pilot,” the Aida digital libraries 
research team at the University of Nebraska-Lincoln (UNL) proposed “Digital Libraries, Intelligent Data Analytics, and 
Augmented Description: A Demonstration Project.” The proposal was awarded a research services contract from the 
Library of Congress. From July 16-to November 8, 2019, members of the Aida research team conducted a series of 
explorations and analyses to assist the Library of Congress in assessing possible applications of machine learning 
within the Library. Three broad goals framed this work: (1) develop and investigate the viability and feasibility of 
textual and image-based data analytics approaches to support and facilitate discovery; (2) understand technical tools 
and requirements for the Library of Congress to improve access and discovery of its digital collections; and (3) enable 
the Library of Congress to plan for future possibilities. 

This report summarizes the design of the demonstration project and the activities of the Aida research team; 
presents key findings resulting from these activities; makes recommendations for possible paths forward; and 
provides documentation for the major activities, including code, data, and reports-in-progress completed during the 
project. This report serves two main purposes: to document the work completed and to extrapolate from that work 
to broader implications for machine learning endeavors at the Library of Congress. Readers most interested in the 
larger social and technical implications of this work may wish to skip to Section 7: Discussion and Section 8: 
Recommendations. 

2 PARTICIPANTS & ROLES 
UNIVERSITY OF NEBRASKA-LINCOLN 

§ Elizabeth Lorang, senior adviser 
§ Leen-Kiat Soh, senior adviser 
§ Yi Liu, research associate and developer 
§ Chulwoo (Mike) Pack, research associate and developer 
§ Ashlyn Stewart, research assistant 

LIBRARY OF CONGRESS‡ 
§ Meghan Ferriter, Chief (Acting) LC Labs/Senior Innovation Specialist 
§ Abbey Potter, Senior Innovation Specialist 
§ Jaime Mears, Senior Innovation Specialist 
§ Eileen Jakeway, Innovation Specialist 
§ Tong Wang, Senior IT Specialist, OCIO 
§ Lauren Algee, Senior Innovation Specialist 
§ Victoria Van Hyning, Senior Innovation Specialist 

3 TIMELINE 
JULY 16, 2019 
Project kick-off meeting held at the Library of Congress 

 

 
‡ In addition to these key contributors, many others at the Library of Congress supported this demonstration project 
in a variety of ways, including through their hospitality, encouragement, brainstorming, and interest in this project. 
We are grateful for and indebted to their efforts. 



 2 

JULY 19-AUGUST 23, 2019 
First-round of iterative development, onsite at the Library of Congress 

AUGUST 26-NOVEMBER 8, 2019 
Second round of iterative development, offsite at the University of Nebraska-Lincoln 

NOVEMBER 6, 2019 
Delivery of preliminary results via virtual meeting 

NOVEMBER 7 – JANUARY 9 
Development of open repository of code, data, and documentation; development of final report 

JANUARY 10, 2020 
Delivery of final results via in-person meeting at Library of Congress 

4 CODE & DATA 
Code and descriptions of data are available via the Library of Congress’s GitHub organization page at the “Exploring 
ML with Project Aida” repository, https://github.com/LibraryOfCongress/Exploring-ML-with-Project-Aida. Following 
submission to the Library of Congress, code, data, and this report will also be available via projectaida.org. 

5 DEMONSTRATION PROJECT DESIGN & APPROACH 
With the size of the Library of Congress’s digital collections and the many potential areas of impact, we might have 
pursued any number of questions in this demonstration project. Scoping our work, both with regard to the 
questions we pursued and the number and type of explorations, was critical.  We anchored our work around two 
areas: (1) extracting and foregrounding visual content from Chronicling America (chroniclingamerica.loc.gov) 
through a variety of techniques and approaches and (2) applying a series of image processing and machine learning 
methods and techniques to minimally processed manuscript collections featured in By the People (crowd.loc.gov). 
We identified these areas of focus because they drew on collections already deemed significant by the Library of 
Congress and because they had a degree of ground-truthing work already completed. In addition, they offered the 
opportunity to explore the advantages and disadvantages and the strengths and weaknesses of 
computational/machine learning approaches as compared to data and information generated by experts, casual 
users, and researchers. Working with these collections had the further benefit of significant opportunity to create 
new, rich, and varied metadata about them, so that the Library might explore the ways in which more robust 
metadata might allow for alternative points of entry into the materials and the opportunity for Library staff and 
researchers to pursue questions of varying nature. 

Ultimately, we designed a series of explorations that allowed us to investigate a range of issues and challenges 
related to machine learning and the Library’s collections. The explorations were developed through an iterative 
process and in regular consultation with members of the Library of Congress staff, both to learn from their 
expertise and to make sure the questions we were pursuing were of value and interest to the Library. Through that 
process, some explorations merged, others concluded more quickly than others, and areas of inquiry seeded in 
one exploration began to sprout in others as well. Individually, the explorations pursued particular technical and 
collections-oriented questions. We also used the explorations as points of entry into—and paths to reflection 
about—larger issues, questions, and challenges for machine learning and cultural heritage.



 3 

6 THE EXPLORATIONS 
This section presents an overview and details of six explorations: Document Segmentation; Graphic Element 
Classification and Text Extraction; Document Type Classification; Digitization Type Differentiation; Document Image 
Quality Assessment and Advanced Document Image Quality Assessment; and Document Clustering. Figure 1 and 
Table 1 identify and show relationships among the explorations and summarize them. In our look at each 
exploration, we identify guiding questions; outline and describe our approaches, techniques, and methods; present 
high-level results and analysis; and offer ideas toward future development and/or potential applications. 

 
FIGURE 1. VISUAL REPRESENTATION OF THE EXPLORATIONS AND THEIR RELATIONSHIPS TO ONE ANOTHER. 
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TABLE 1. THE EXPLORATIONS PURSUED AS PART OF THE DEMONSTRATION PROJECT AND THEIR SELECTED POTENTIAL APPLICATIONS. 

   Selected Potential Applications 

  Technical Objective 

M
et

ad
at

a 
ge

ne
ra

tio
n 

(s
tr

uc
tu

ra
l, 

de
sc

rip
tiv

e,
 e

tc
.) 

G
ra

ph
ic

al
 c

on
te

nt
 e

xt
ra

ct
io

n 

In
flu

en
ce

 d
ec

is
io

n-
m

ak
in

g 
fo

r h
um

an
 

an
d/

or
 m

ac
hi

ne
 p

ro
ce

ss
in

g 

Fa
ce

te
d 

da
ta

 fo
r e

nd
-u

se
rs

/r
es

ea
rc

he
rs

  
in

 se
ar

ch
/d

is
co

ve
ry

 in
te

rf
ac

e 

G
ro

un
d 

tr
ut

h 
an

d  
be

nc
hm

ar
k 

se
ts

 fo
r 

m
ac

hi
ne

 le
ar

ni
ng

 a
nd

 im
ag

e 
an

al
ys

is
 

pr
oj

ec
ts

 c
om

pe
tit

io
ns

 

U
nd

er
st

an
di

ng
 c

ol
le

ct
io

ns
 

First-Round Explorations   
Document Segmentation Find and localize 

image-like components 
in newspaper pages 

ü ü   ü   ü   

Graphic Element 
Classification and Text 
Extraction 

Find and localize 
graphical content, 
extract text from this 
content in newspapers 

ü ü   ü  ü    

Document Type 
Classification 

Classify manuscript 
collection pages as 
handwritten, printed, 
mixed 

ü    ü ü ü ü 

Document Image Quality 
Assessment 

Analyze quality of 
manuscript collection 
page images 

ü   ü ü ü ü 

Digitization Type 
Differentiation 

Classify manuscript 
collection images as 
digitized from original 
or microform 

ü   ü ü ü ü 

Second-Round Explorations   
Document Clustering Extract high-level 

features, cluster, 
investigate similarity 

ü   ü ü ü ü 

Figure/Graph Extraction Find and localize 
image-like components 
in newspaper pages 

ü ü   ü ü  

Advanced Document Image 
Quality Assessment 

Analyze quality of 
manuscript collection 
page images for 
compactness 

ü   ü ü ü ü 

Digitization Type 
Differentiation 

Fine-tune classification 
of manuscript 
collection images as 
digitized from original 
or microform 

ü   ü ü ü ü 
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6.1 EXPLORATION: DOCUMENT SEGMENTATION 
The goal of this exploration was to see if we could localize textual zones, figures, layout borders, and tables and then 
identify image-like components in historic newspaper pages. Currently, newspaper page images presented through 
Chronicling America are not zoned or segmented below the page level. In addition, content within a newspaper page 
is not identified or classified by genre, type, or other features. This exploration, then, was guided by the questions: 
how might we use image zoning and segmentation to generate additional information about newspaper pages in 
the Chronicling America corpus? Could image zoning and segmentation be used to pull out graphical content from 
Chronicling America newspapers? How might machine learning projects draw on ground truth or benchmark data 
already generated through crowdsourcing efforts? 

This exploration applied the dhSegment tool for historical document image processing to historical newspapers.4 
ResNet, a feature extractor in dhSegment, is capable of encoding an image down to a set of high-level visual features 
effectively and efficiently. We applied dhSegment to two sets of newspaper images, one set from the Library of 
Congress’s Beyond Words project (http://beyondwords.labs.loc.gov/#/), which is based on Chronicling America 
newspapers, and one from the Europeana Newspapers Project (https://www.primaresearch.org/datasets/ENP).  

In the Beyond Words project, members of the public drew rectangular zones around illustrations, photographs, 
comics, and cartoons in World War I-era newspapers, and users also transcribed captions for this content. In a 
subsequent stage of work, users could apply a typology to the graphical content, choosing among editorial cartoon, 
comics/cartoon, illustration, photograph, or map. Our expectation was that Beyond Words would provide ground 
truth data against which we might verify machine learning-based approaches to the same challenges (graphical 
content zoning).  

We obtained a subset of 1,532 newspaper page images from Beyond Words and corresponding data for graphical-
content zones. We used 1,226 images for training and 306 images for evaluation. In two different test scenarios 
(BW_1500_v1 and BW_1500_v2), when trained and evaluated on Beyond Words newspaper pages, we achieved 
best accuracy scores of 87% and 88%. Table 2 outlines results. Unfortunately, the relatively high accuracy scores are 
misleading upon further examination, since the model’s behavior of predicting most pixels to be background pixels 
is guaranteed to achieve high accuracy. The low values for the best mean intersection over union (mIoU) scores 
verify this problematic behavior in the model, as we observe only a 26% and 24% overlap between the target class 
and the model’s prediction. 

For further exploration of the approach, we also trained and evaluated the model on a set of 481 pages from the 
Europeana Newspapers corpus. These newspaper page images are already zoned and segmented, with the segments 
classed as background, text, figure, separator or table. These classes are different from the classes in the Beyond 
Words dataset, which were all classes of graphical content or background. When we trained and evaluated the model 
on the Europeana Newspapers, we were verifying against the respective classes of the set.  

In deploying on the Europeana Newspapers dataset in four scenarios (ENP_500_v1, ENP_500_v2, ENP_500_v3, 
ENP_500_v4), we achieved best accuracy scores of 88%, 89%, 91%, and 91%, and best mIoU scores of 64%, 64%, 
69%, and 69%. In these scenarios, text regions are included in the ground-truth, and thus the model’s simple guessing 
that everything is background is penalized. The high accuracy scores are more trustworthy in these scenarios, as 
further corroborated by the higher scores for mIoU. 

 
4 Seguin and Ares Oliveira, dhSegment; Ares Oliveira, Seguin, and Kaplan, “DhSegment.” 
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TABLE 2. RESULTS OF PAGE SEGMENTATION WHEN TRAINING AND EVALUATING THE DHSEGMENT MODEL ON TWO SETS OF HISTORICAL 
NEWSPAPERS, A ROUGHLY 1500-PAGE SET FROM BEYOND WORDS/CHRONICLING AMERICA AND AN APPROXIMATELY 500-PAGE SET FROM 
THE EUROPEANA NEWSPAPERS COLLECTION. 

Model Train/Eval 
Size 

Classes Weighted 
Training 

Pre-processing 
(Normalization) 

Best Score 
Accuracy mIoU 

BW_1500_v1 

1226/306 

0: Background 
1: Editorial cartoon 
2: Comics/cartoon 
3: Illustration 
4: Photograph 
5: Map 

No 

No 

0.87 0.24 
BW_1500_v2 Yes 

[10; 22; 20; 18; 8; 
22] 

0.88 0.26 

ENP_500_v1 

385/96 

0: Background 
1: Text 
2: Figure 
3: Separator 
4: Table 

Yes 
[5; 10; 40; 10; 35] 

No 0.88 0.64 
ENP_500_v2 Yes 0.89 0.64 
ENP_500_v3 No No 0.91 0.69 
ENP_500_v4 Yes 0.91 0.69 

We did not conduct a broad deployment of the Europeana Newspapers model on Beyond Words/Chronicling 
America pages, because we did not have verifiable, commensurate ground truth across the sets. We did, however, 
conduct a limited test of the Europeana Newspapers-trained model (specifically ENP_500_v3) on Chronicling 
America page images, and the visual results are encouraging. See Figure 2, Figure 3, Figure 4, and Figure 5 for true-
positive correlations, according to visual inspection, as well as for examples of false-positives and false-negatives, 
respectively. 

 
FIGURE 2. SEGMENTATION RESULT OF ENP_500_V4 ON A CHRONICLING AMERICA IMAGE (SN92053240-19190805.JPG). CLOCKWISE FROM 
TOP- LEFT: (1) INPUT, (2) PROBABILITY MAP FOR FIGURE CLASS, (3) DETECTED FIGURES IN POLYGON, AND (4) DETECTED FIGURES IN 
BOUNDING-BOX. IN THE PROBABILITY MAP, PIXELS WITH A HIGHER PROBABILITY OF BELONGING TO THE FIGURE CLASS ARE SHOWN WITH A 
BRIGHTER COLOR. 
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FIGURE 3. SEGMENTATION RESULT OF ENP_500_V4 ON A CHRONICLING AMERICA IMAGE 
(SN84026820_00271765095_1917050501_0153.JPG). CLOCKWISE FROM TOP-LEFT: (1) INPUT, (2) PROBABILITY MAP FOR FIGURE CLASS, (3) 
DETECTED FIGURES IN POLYGON, AND (4) DETECTED FIGURES IN BOUNDING-BOX. IN THE PROBABILITY MAP, PIXELS WITH A HIGHER 
PROBABILITY OF BELONGING TO THE FIGURE CLASS ARE SHOWN WITH A BRIGHTER COLOR. 
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FIGURE 4. SEGMENTATION RESULT OF ENP_500_V4 ON A CHRONICLING AMERICA IMAGE 
(SN82014086_00295866135_1917091301_0116.JPG). CLOCKWISE FROM TOP-LEFT: (1) INPUT, (2) PROBABILITY MAP FOR FIGURE CLASS, (3) 
DETECTED FIGURES IN POLYGON, AND (4) DETECTED FIGURES IN BOUNDING-BOX. IN THE PROBABILITY MAP, PIXELS WITH A HIGHER 
PROBABILITY OF BELONGING TO THE FIGURE CLASS ARE SHOWN WITH A BRIGHTER COLOR. 
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FIGURE 5. SEGMENTATION RESULT OF ENP_500_V4 ON CHRONICLING AMERICA IMAGE (SN86063952-19190805.JPG). CLOCKWISE FROM 
TOP- LEFT: (1) INPUT, (2) PROBABILITY MAP FOR FIGURE CLASS, (3) DETECTED FIGURES IN POLYGON, AND (4) DETECTED FIGURES IN 
BOUNDING-BOX. IN THE PROBABILITY MAP, PIXELS WITH A HIGHER PROBABILITY OF BELONGING TO THE FIGURE CLASS ARE SHOWN WITH A 
BRIGHTER COLOR. 

6.2 EXPLORATION: GRAPHIC ELEMENT CLASSIFICATION AND TEXT EXTRACTION 
This exploration was similar to the document segmentation exploration and became closer in goal and scope to that 
exploration over its iterations. Initially, the goal of this exploration was to find and localize figures, illustrations, and 
cartoons present in historical newspaper page images; classify the graphical content; and extract any text from the 
graphical content in order to generate a transcription of the textual content. By its second iteration, this exploration 
focused on fine-tuning the identification of graphical content in historic newspaper page images and the distinction 
of graphical content regions from textual content regions. The questions that guided this exploration throughout its 
development included: how might we use image zoning and segmentation, and text extraction from graphical 
regions, to generate additional information about newspaper pages in the Chronicling America corpus? Could image 
zoning and segmentation be used to pull out graphical content from Chronicling America newspapers? What benefits 
do different types or approaches to zoning and segmentation have for various information tasks? What strategies 
might be necessary to deal with rare content types in the training and evaluation of machine learning systems? 

This exploration proceeded in two phases. The first phase established a conceptual model and workflow for a two-
stepped approach that would result in segmented and classified graphical regions from historic newspaper pages 
and the segmentation and recognition of textual content in the graphical regions. Conceptually, our approach was 
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based on dhSegment, but instead of combining U-Net5 and ResNet-506 as we did in the document segmentation 
exploration, we used the ResNeXt 7  classification model, a next-generation model from the ResNet that was 
employed in dhSegment. Such network combination belongs to the family of fully convolutional neural networks 
(FCN).  We call our FCN that uses ResNeXt “U-NeXt.” The goal was to see whether we could further enhance the 
results obtained with dhSegment by using this newer method. The model training was based on the pre-trained 
ResNeXt model for ImageNet. Finally, in the conceptual workflow, we planned to use EAST8 text detection to find 
textual regions in the graphical images and use an optical character recognition process to recognize the textual 
strings within the graphical zones. 

Our goal was to apply this conceptual model to newspaper page images from the Beyond Words project. In the 
above document segmentation exploration, the mIoU score was only 24%-26% on the Beyond Words dataset. We 
considered possible reasons that for the low mIoU scores. One possibility was that the feature extractor, ResNet, 
was not powerful enough to extract high-level features from the dataset for identification and classification. Notably, 
the ResNet model was reported by He et al. in 2015. However, in 2017, they reported a second-generation, ResNeXt, 
which beat the previous record on an ImageNet challenge.9 Another possibility was that the rareness of some types 
of regions, such as maps, which comprise 1% of the regions, might skew the training process. As a result, we decided 
to test the ResNeXt model. 

In addition, the data from Beyond Words were not sufficiently reliable for training purposes for this exploration.10 
One challenge with the data is that it does not include graphical content in advertisements; our model does not 
distinguish between graphical content in advertisements and graphical content in other types of content zones—
graphical content is graphical content, at the stage of graphical content recognition and segmenting. In addition, not 
all graphical content has necessarily been marked on a page in the Beyond Words dataset. Since machine learning 
models will try to find all graphical content within the input page, such missing graphical regions can confuse the 
model during the training process. Another challenge, which we explore more fully below, is that ground-truth 
regions are not necessarily tightly mapped to the actual shape of the graphical region. 

In its second phase of development, then, this exploration become a refinement of the original document 
segmentation exploration. We deconstructed the conceptual model described above and focused only on 
implementing the U-NeXt fully convolutional neural network for the purposes of graphical content extraction and 
classification. Our goal in doing so was to see if we could further improve upon the results reported by the 
dhSegment authors and the results we achieved in our document segmentation exploration that implemented 
dhSegment. 

In the second phase of this exploration, we first conducted a pre-training investigation, which involved training and 
testing on the Europeana Newspapers dataset, since it is more comprehensively labeled than the Beyond Words 

 
5 Ronneberger, Fischer, and Brox, “U-Net.” 
6 He et al., “Deep Residual Learning for Image Recognition.” 
7 Xie et al., “Aggregated Residual Transformations for Deep Neural Networks.” Compared to ResNet, ResNeXt uses 
grouped convolution (i.e. side-by-side convolution layers) in each residual block. The usage of grouped convolution 
was first mentioned in AlexNet. See Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep 
Convolutional Neural Networks.” 
8 Zhou et al., “EAST.” 
9 Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge.” 
10 For more on Beyond Words, see the Library of Congress Labs’ Experiments page, 
https://labs.loc.gov/experiments/?st=gallery Note as well that Beyond Words was not implemented with the 
purpose of creating training data or being used as training data. 
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data for our purposes. This pre-training investigation reached 91.30% pixel-wise accuracy and 57.19% for mIoU, with 
a testing performance of 81.90% pixel-wise accuracy and 48.18% mIoU. Note that the investigation did not reach 
the score of dhSegment on the ENP dataset in the document segmentation exploration. However, considering the 
ENP dataset and the Beyond Word dataset only share partial features, so  it is not necessary to train the investigation 
to its best state. In fact, the observed convergence indicated the parameters were getting trained to fit the task and 
the model was ready for fine-tuning.  

Then, we conducted a series of fine-tuning investigations, which involved four different approaches: 

1. The first approach trained and tested U-NeXT on the Beyond Words dataset without using the Europeana 
Newspapers-trained classifier.  This approach was meant to serve as a baseline design. We observed 
convergence in both training and testing curves, but the testing curve showed instability with rapid high 
and low variation during the investigation. Statistics showed that the classifier failed to recognize classes of 
editorial cartoons, illustrations, and maps. These three classes were the three rarest classes in the ground 
truth set, and the misrecognition issue is likely caused by the rareness of corresponding classes. 

2. The second approach used the Europeana Newspapers-trained classifier as the beginning classifier. We then 
trained and tested it on the Beyond Words dataset. We added this design because using a pre-trained 
classifier for a similar task could help the overall fine-tuning investigations address challenges with reliable 
ground truth when working only with the Beyond Words dataset. Though performance indicators appeared 
promising, upon further investigation, the classifier trained during the fine-tuning experiment attempted 
to classify many pixels as background pixels after training convergence. Therefore, while the performance 
statistics are better than the first fine-tuning experiment numerically, the actual performance is worse, 
since none of the object classes (specific types of graphical content) were recognized. 

3. The third approach replaced a deconvolutional layer with a resizing layer in the deep learning model. For 
this approach, we trained and tested on the Beyond Words dataset. This approach is designed to address a 
problem with the deconvolutional layer11; the resizing layer is perceived as an improvement on the overall 
technique. The pixel-wise testing accuracy is higher than in fine-tuning approach #1, but the mIoU is lower 
than in that fine-tuning approach. As with fine-tuning approach #2, we also found that pixel-wise accuracy 
and mIoU of the editorial cartoon, illustration, and map classes are zeros. However, the testing curve did 
not show the same instability as in fine-tuning approach #1. This result suggests that the resizing layer 
helped to address the challenge with the deconvolutional layer, so it is more stable than fine-tuning 
approach #1, though less accurate overall.  

4. The fourth approach performed a two-class segmentation and classification, instead of six-class processes 
on the Beyond Words dataset for both training and testing. We reduced the number of classes to two 
because the training dataset is biased where there is a predominantly large number of background pixels 
compared to other classes of pixels.12 Pixels in non-background classes comprise only 11.79% of the entire 
training dataset in total. By collapsing all the object pixels into one class, we can reduce the imbalance in 
the number of pixels in each class during training. The results indicate that training a classifier to learn 
information from rare classes is very hard. Combining five non-background classes into one class decreases 
the complexity of the task. The combined class segmentation outperformed the other fine-tuning 
experiments. 

 
11 Odena, Dumoulin, and Olah, “Deconvolution and Checkerboard Artifacts.” 
12 There are 88.21% pixels in background class, but for the rest of classes, only 0.71% in editorial cartoon class, 2.89% 
in comics/cartoon class, 1.38% in illustration class, 6.64% in photograph class, and 0.18% in map class. 
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Approaches two through four are variants of the first approach. See Table 3 for a summary of results for the pre-
training investigation and the four fine-tuning investigations. 

TABLE 3. AVERAGE PERFORMANCE OF PRE-TRAINING INVESTIGATION AND FINE-TUNING APPROACHES. 

 

Pre-Training 
Investigation 

Without Pre-
Trained 

Europeana 
Newspapers 

Classifier 

Using Pre-
Trained 

Europeana 
Newspapers 

Classifier 

Using Resizing 
Layers 

Combined Two-
Class Segmentation 

 Train Test Train Test Train Test Train Test Train Test 
Accuracy 91.30% 81.90% 89.08% 80.11% 89.42% 85.53% 88.90% 86.69% 91.76% 88.89% 
mIoU 57.19% 48.18% 50.43% 38.00% 41.21% 38.57% 51.31% 37.84% 71.44% 64.97% 

From these investigations, we conclude that U-NeXt—especially the combined two-class segmentation—is 
promising for segmentation and zoning. At the same time, the fine-tuning approaches offered evidence that the 
Beyond Words dataset was not sufficient ground truth for our purposes. We found two issues. First, non-identified 
or incompletely identified graphical images in the Beyond Words dataset appear to be widespread to an extent that 
is problematic for training. For example, as shown in Figure 6, a large portion of a photograph in the document is 
missing from the ground truth but is captured by our U-NeXt classifier. Second, the rectangular regions do not 
necessarily match to the actual graphical content. For instance, as shown in Figure 7, the ground truth region includes 
a large portion of the textual content. 

   
Newspaper Page Beyond Words Ground Truth U-NeXt Map 

FIGURE 6. THE BEYOND WORDS DATA, WHICH WE TREATED AS GROUND TRUTH, IS MISSING MUCH OF THE GRAPHICAL CONTENT ON THE 
PAGE, WHILE THE U-NEXT MAP APPEARS MORE REPRESENTATIVE OF THE ORIGINAL PAGE. 
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Newspaper Page Beyond Words Ground Truth U-NeXt Map 

FIGURE 7. EACH OF THE THREE COLUMNS WITH GRAPHICAL CONTENT HAVE MUCH LARGER BOUNDING BOXES IN THE GROUND TRUTH THAN 
WHAT CORRESPONDS TO THE ACTUAL GRAPHICAL CONTENT. THE U-NEXT MAP APPEARS MORE REPRESENTATIVE OF THE ORIGINAL. 

These challenges with the Beyond Words dataset as ground truth for this exploration also lead us to believe that our 
classifier may be more accurate than the current statistical results would suggest. The U-NeXt model tries to fit the 
exact shape of the figure and graph region. Figure 8 shows, for example, that the model tried to fit the exact shape 
of the eagle on the right-hand side of the newspaper page. Since the ground truth included rectangular bounding 
boxes, we are not comparing like to like in our pixel-wise and mIoU comparisons. 

   
Newspaper Page Beyond Words Ground Truth U-NeXt Map 

FIGURE 8. IN THIS CASE, THE “BUY LIBERTY BONDS” ADVERTISEMENT IS NOT REPRESENTED IN THE GROUND TRUTH, LIKELY BECAUSE IT IS AN 
ADVERTISEMENT AND THEREFORE OUT OF SCOPE FOR THE BEYOND WORDS PROJECT. THE U-NEXT MAP, HOWEVER, RECOGNIZES THE 
GRAPHICAL CONTENT AND CLOSELY FITS TO IT. 
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6.3 EXPLORATION: DOCUMENT TYPE CLASSIFICATION 
This exploration pursued whether we could effectively distinguish among handwritten, printed, and mixed (both 
handwritten and printed) documents within a collection of minimally processed manuscript materials at the Library 
of Congress. This exploration was guided by the questions: what features might be useful for influencing processing 
pipelines, for generating additional metadata, or for distinguishing among materials? How viable might large-scale 
indexing of documents be, for certain types of criteria? To what level of performance could we meta-tag document 
images? Would a deep learning model that had shown  remarkable performance for natural scene images also show 
promising performance for document images? Or, to be more precise, would a feature extractor trained with 
millions of natural scene images also capably extract useful features for document images? 

This exploration drew on current state-of-the-art methods in natural image and document classification. In 
particular, we extended the use of convolutional neural networks for classifying natural images to the task of 
classifying document images. Based on the findings of Harley et al. and Afzal et al., we used the VGG method with 
16 categories (VGG-16) pre-trained on the Ryerson Vision Lab Complex Document Information Processing 
(RVL_CDIP) dataset.13 The RVL_CDIP dataset, which is publicly available, consists of 400,000 document images that 
are divided into 16 evenly distributed classes. The dataset is provided in three different sets: training, validation, and 
test set. The training set contains 320,000 images of 16 different evenly distributed classes (i.e., about 20,000 images 
per class). Both validation and test sets together contain 40,000 images of 16 different evenly distributed classes 
(2,500 images per class).  

We first set out to reproduce the results reported in the work of Harley et al. and assessed classification 
performances of VGG-16, pre-trained on ImageNet, and trained and tested with RVL_CDIP dataset. The advantage 
of doing so is that once we created a model trained on this large-scale document image dataset, we can reuse the 
rich features that this model has learned for many document analysis tasks, such as for our current ask of document 
type classification. The entire training process took only three epochs to converge with promising classification 
results. This indicates that features obtained from natural scene images (i.e., ImageNet) are general enough to be 
applied to documents. The resultant classification performance metrics—precision, recall, and f1-score—are shown 
in Table 4. On average, each metric shows around 87%, which aligns well with the result reported by Harley et al.  

TABLE 4. PRECISION, RECALL, AND F1-SCORE OF VGG-16 AS TRAINED ON RVL_CDIP DATASET. THE ALPHABETIC LABELS CORRESPOND TO THE 
FOLLOWING LABELS: LETTER, FORM, EMAIL, HANDWRITTEN, ADVERTISEMENT, SCIENTIFIC REPORT, SCIENTIFIC PUBLICATION, SPECIFICATION, 
FILE FOLDER, NEWS ARTICLE, BUDGET, INVOICE, PRESENTATION, QUESTIONNAIRE, RESUME, AND MEMO. OUR CLASS OF INTEREST, 
HANDWRITTEN, IS BOLDED. 

 A B C D E F G H I J K L M N O P Avg 
Precision 86 74 98 89 89 73 90 99 89 92 87 91 78 91 92 88 87 
Recall 94 79 97 96 91 73 93 91 97 86 83 86 79 73 94 91 87 
F1 86 77 97 92 90 73 91 90 93 89 85 88 79 81 93 90 87 

Next, we generated our own model for the specific task of classifying documents in one of three types, handwritten, 
typed/typeset, or mixed (both handwritten and typed/typeset). For this task, we retrained the model obtained from 

 
13  Harley, Ufkes, and Derpanis, “Evaluation of Deep Convolutional Nets for Document Image Classification and 
Retrieval”; Afzal et al., “Cutting the Error by Half”; Simonyan and Zisserman, “Very Deep Convolutional Networks for 
Large-Scale Image Recognition.” 
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the above with a dataset derived from the Suffrage: Women Fight for the Vote campaign from By the People. The 
dataset for this exploration is hereafter referred to as suffrage_1002.  

The suffrage_1002 dataset had 1,002 manually classified images and was balanced across handwritten, 
typed/typeset, and mixed. This ground truth set was created by members of the project team. The entire dataset 
was split into three sets—training, validation, and test—with a ratio of 8:1:1. In order to keep the class balanced 
during this split, we dropped three datapoints, one of each class. The final size of the dataset was therefore 999 
images. See Table 5 for the breakdown by sets and class. 

TABLE 5. CONFIGURATION OF SUFFRAGE_1002 DATASET. 

 Handwritten Typed/Typescript Mixed Total 
Train 267 267 267 801 
Validation 33 33 33 99 
Test 33 33 33 99 
Total 333 333 333 999 

We use the same VGG-16 architecture as above, but the output tensor was adjusted to have a shape of 3, the number 
of classes specified in suffrage_1002. Overall, our model’s classification performance on the testing set shows about 
90% for precision, recall, and f1-score, as shown in Table 6. We believe that these scores, which are a bit lower than 
those reported above in our attempts to reproduce Harley et al., are due to challenging characteristics of mixed type 
document images; for example, mixed materials may have negligible or statistically challenging amounts of 
handwriting in typed document and vice versa. See Figure 9 for examples. 

TABLE 6. PRECISION, RECALL, AND F1-SCORES OF VGG-16 ON SUFFRAGE_1002 TESTING SET. 

 Handwritten Typed/Typescript Mixed Avg 
Precision 89 91 90 90 
Recall 97 94 79 90 
F1 93 93 84 90 

 

 
FIGURE 9. PREDICTION FAILURE CASES. IN THE LEFT EXAMPLE, THE MODEL CLASSIFIED THE DOCUMENT AS HANDWRITTEN RATHER THAN 
MIXED. NOTE THAT THE PRINTED REGIONS ARE VERY SMALL COMPARED TO THE HANDWRITTEN CONTENT IN THE IMAGE. IN THE RIGHT 
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EXAMPLE, THE MODEL CLASSIFIED THE DOCUMENT AS PRINTED RATHER THAN MIXED. HERE, THE HANDWRITTEN REGION IS VERY SMALL 
COMPARED TO THE PRINTED REGION IN THE IMAGE. 

In the case of the examples in Figure 9, both images have technically been classified incorrectly, according to our 
current model and set of definitions. Both images depict documents that feature printed and handwritten content, 
and therefore both technically fit the definition of mixed. However, this example provides an opportunity to consider 
whether the actual mixed nature of these materials matters for processing purposes. If the Library of Congress were 
interested in this question for the benefit of helping to make decisions about how to handle particular types of 
materials—for example, that materials with significant handwritten content get passed to human experts, whether 
within the Library or outside of it—then materials with some, but limited print content are usefully grouped with 
handwritten materials. Likewise, if there was a strong mix of content types, that might also signal materials for 
human processing, whereas in the example of materials with minimal handwritten content, it may be fine to pass 
those materials off to more automated processes. 

6.4 EXPLORATION: DIGITIZATION TYPE DIFFERENTIATION 
The purpose of this exploration was to distinguish among digital images created through digitization from different 
source types. In particular, we sought to distinguish between items digitized from an original document item and 
those digitized from a microform reproduction of an original item. We expected that digitization source should be a 
relatively easy feature to distinguish and could have a variety of potential use cases for both internal processes and 
decision-making at the Library and for end users and researchers. A variety of questions sat behind this exploration. 
As with the document classification exploration, we wondered: what features might be useful for influencing 
processing pipelines, for generating additional metadata, or for distinguishing among materials? How viable might 
large-scale indexing of documents be, for certain types of criteria? To what level of performance could we meta-tag 
document images? We also wondered who might benefit from the ability to facet or search according to this 
particular criterion—digitization source—and how that might information might be made available. 

This exploration proceeded in two phases. In both, we used ResNeXt, a deep learning method, to differentiate among 
images digitized from an original and those digitized from a microform reproduction. All images for this exploration 
came from the minimally processed manuscript collections included in the By the People Civil War campaign.  

We first retrieved 36,103 images from the minimally processed Civil War materials and manually inspected 10,508 
images, or slightly less than 30% of the total images. We determined digitization source ground truth for each of 
these 10,508 images. We then sampled a subset of 1,200 images from the 10,508 in a balanced set (600 images of 
each type, digitized from original and digitized from microform). In a 10% test of 120 sample images, the classifier 
was 100% accurate in classifying images as digitized from an original item or from a microform. We had concern, 
however, that this 100% accuracy was likely too good to be true when deployed over a larger set of images. We 
therefore proposed to compare the ratio of items digitized from microform to items digitized from original items to 
more comprehensively evaluate our approach. Based on the ground truth classification of the 10,508 images, we 
would expect a 1:16 ratio of images digitized from microform to images digitized from original items across the Civil 
War dataset. 

In the second phase of this exploration, we fine-tuned the classifier, classified 36,103 images retrieved from the Civil 
War manuscript collections, and compared the number and ratio of expected classification to real classifications. In 
fine-tuning the classifier, we achieved a training accuracy of 98.52%, and a validation accuracy of 100%. In order to 
determine an ideal point between underfitting and overfitting the classifier, we calculated the harmonic mean of 
training performance and validation performance, to avoid both underfitting and overfitting.  
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We then used the fine-tuned classifier to classify the 36,103 images. Based on the first phase of this exploration, we 
expected that the image set would include 2,256 document images digitized from microfilm and 33,847 digitized 
from their original source. In reality, the classifier identified 2,834 images as digitized from microform and 33,269 
images as digitized from an original item. See Table 7. Therefore, while we expected a classification ratio of 1:16 
(microform to original), the achieved classification ratio was 1:11.74. The classifier was more aggressive in identifying 
images as having been digitized from a microform reproduction than we would have anticipated based on our initial 
tests. 

TABLE 7. BREAKDOWN OF PROJECTIONS AND ACTUAL CLASSIFICATIONS OF CONTENT AS DIGITIZED FROM MICROFORM OR DIGITIZED FROM 
AN ORIGINAL ITEM. 

Total Images Expected 
Microform Source 

Classified Microform 
Source 

Expected Original 
Source 

Classified Original 
Source 

36,103 2,256 2,834 33,847 33,269 

Without identifying the ground truth of each of the 36,103 items, we cannot be sure if the 1:16 ratio is entirely 
accurate. However, we do know that the classifier was more aggressive in identifying items as digitized from 
microform reproductions than in classifying them as digitized from an original item. For example, each of the items 
in Figure 10, Figure 11, Figure 12, and Figure 13, while actually digitized from original items, were classified as being 
digitized from microform reproductions. 

 
FIGURE 10. FACING PAGES OF A DOCUMENT, DIGITIZED FROM THE ORIGINAL, THAT THE CLASSIFIER CLASSIFIED AS HAVING BEEN DIGITIZED 
FROM MICROFORM. THERE IS MINIMAL CONTENT ON THE PAGES. 
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FIGURE 11. A HANDWRITTEN MANUSCRIPT PAGE IMAGE, DIGITIZED FROM THE ORIGINAL, AND CLASSIFIED BY OUR CLASSIFIER AS HAVING 
BEEN DIGITIZED FROM MICROFORM. THE CONTRAST OF THE IMAGE IS LOW. 

 
FIGURE 12. A DIGITAL IMAGE OF A COIN, DIGITIZED FROM THE ORIGINAL ITEM, AND CLASSIFIED BY OUR CLASSIFIER AS HAVING BEEN 
DIGITIZED FROM A MICROFORM REPRODUCTION. 
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FIGURE 13. A DIGITAL IMAGE OF A PHOTOGRAPH, DIGITIZED FROM THE ORIGINAL ITEM, AND CLASSIFIED BY OUR CLASSIFIER HAS HAVING 
BEEN DIGITIZED FROM A MICROFORM SOURCE. 

We believe these misclassifications were due to limitations of our training set, which did not include blank pages 
digitized from original items, photographs (that is, photographs of people that are included in the manuscript 
collections, for example), images with poor document contrast, or 3-d objects represented in the collections. 

In the future, two options could effectively improve the performance further. First, we can expand the training 
database to include more examples and types of materials. Second, we can apply a pre-processing step to normalize 
the document image quality for the collection before the prediction stage. Overall, however, results were promising 
and suggest that automated type differentiation is viable and computationally cheap. 

6.5 EXPLORATION: DOCUMENT IMAGE QUALITY ASSESSMENT (DIQA) & ADVANCED DIQA 
This exploration set out to analyze the quality of document images in minimally processed manuscript collections 
based on a variety of criteria with the goal of using information about image quality to inform future processes and 
toward making this information available for researchers looking for particular kinds of images (or images of 
particular quality). This exploration was guided by the questions: how might we distinguish among materials that 
most need human intervention, whether by Library of Congress staff or via crowdsourcing and the public, and those 
materials that might be well-suited to machine approaches? And when might materials be best suited to a combined 
approach? Could image quality assessments be useful in compiling ground truth and benchmarking sets in some 
capacity? Likewise, might such features be useful further downstream for users, to be able to facet for difficulty, for 
example? How might metadata about image quality of document images enrich understanding of individual items 
and of collections and corpora? To what extent can quality be computationally assessed, and might it help to better 
understand overall visual attributes of a dataset? 

This exploration proceeded in two phases. In the first phase, we measured a set of image properties for each of 
35,990 images retrieved from minimally processed manuscript collections included in the By the People Civil War 
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campaign. These image properties included skewness, contrast, range-effect, and bleed-through (background 
noise).14  

6.5.1 DOCUMENT IMAGE QUALITY ASSESSMENT (DIQA) 

6.5.1.1 SKEWNESS 
The skewness measure ranges from a score of -2 to 2, with any score other than 0 indicating skew is present. For 
example, a skew of -2 indicates significant counterclockwise skew, while a score of 2 indicates significant clockwise 
skew. Of the 35,990 images, nearly 50% of the images show no or negligible skew (a score of 0, or between 0 and 
|1|). Nearly 44% of the images (43.63%), are significantly skewed. See Chart 1. 

CHART 1. SKEWNESS MEASURES OF 35,990 IMAGES FROM MINIMALLY PROCESSED CIVIL WAR COLLECTIONS. 43.63% OF IMAGES ARE 
SIGNIFICANTLY SKEWED (SCORE |2|). 

 

6.5.1.2 CONTRAST 
Based on earlier work, the Aida team has determined that a contrast score of 30 or above indicates a good quality 
contrast in a digital image of a historic document;15 the higher the contrast score, the better the visual quality. We 
plotted contrast over time (original date of document page, based on existing metadata) and determined that the 
two decades of materials represented in the Civil War collection fell below the threshold for a good contrast score: 
1860–1869 and 1930–1939. See Chart 2. 

 
14 The document image quality assessment algorithms used in this exploration were developed as part of the Aida 
team’s earlier efforts to assess qualities of newspaper page images from 1834 to 1922. See Lorang, Soh, Liu, Pack, 
and Rahimi, “Using Chronicling America’s Images to Explore Digitized Historic Newspapers & Imagine Alternative 
Futures.” 
15 Lorang, Soh, Liu, Pack, and Rahimi, “Using Chronicling America’s Images to Explore Digitized Historic Newspapers 
& Imagine Alternative Futures.” 
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CHART 2. AVERAGE CONTRAST SCORES OF MATERIALS WITHIN DECADE-RANGES. FOR EXAMPLE, MATERIALS FROM THE PERIOD 1840-1849 
HAVE AN AVERAGE CONTRAST SCORE OF 70.22, WHILE MATERIALS FROM THE PERIOD 1930-1939 HAVE AN AVERAGE CONTRAST SCORE OF 
23.87. 

 

While images from 1930 to 1939 result in lowest contrast score, the significant majority of images in the collection—
roughly 90%—date to between 1860-1869. These dates also overlap with the actual years of the Civil War, making 
the images from that decade most critical for further analysis. When we look more closely at the contrast scores 
within this decade, 1861, 1862, 1863, and 1864 all show average contrast scores below 22. See Chart 3. These data 
suggest that materials from most of the actual Civil War years have the lowest contrast in the collection and also 
that their contrast is below the threshold for good visual contrast. The low contrast can make these materials 
challenging for computational processing and also for human readers. 

CHART 3. AVERAGE CONTRAST SCORES OF MATERIALS FROM THE DECADE 1860-1869 BY YEAR. MATERIALS FROM 1861 HAVE AN AVERAGE 
CONTRAST SCORE OF 21.50, FOR EXAMPLE, WHILE MATERIALS FROM 1868 HAVE AN AVERAGE CONTRAST SCORE OF 48.22. 

 

We suspect that the low score could be document images that are digitized from handwritten letters, shown in 
Figure 14. There are two persistent features among these letters that could lower the contrast score. First, the 
original paper is often yellowish in hue. Second, the ink or pencil is often light—again, whether due to original 
inscription or time, or a combination of elements.  
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FIGURE 14. AN IMAGE WITH A LOW-CONTRAST SCORE FROM THE CIVIL WAR YEARS. FEATURES OF THIS IMAGES, SUCH AS THE COLOR OF THE 
PAPER AND THE LIGHT INK INSCRIPTION, MAY BE COMMON ACROSS THE MATERIALS, LEADING TO OVERALL LOW CONTRAST SCORES. 

6.5.1.3 RANGE-EFFECT 
The lower the range effect score, the better the quality of the image with regard to this feature. An ideal score is 
zero, and our team’s earlier work with historic newspapers suggests that a range-effect score lower than three is 
indicative of a good-quality image. The materials from the decade 1860-1869 have an average range-effect score of 
2.99. With materials in this decade comprising 90% of the images in the set, we believe range effect is not a 
substantial challenge for images in the Civil War collections. There are some noticeable outliers, as show in Chart 4, 
though in the case of the images from the period 1930-1939, the average score was significantly affected by two 
images with very high range-effect scores. 

CHART 4. AVERAGE RANGE EFFECT OF THE CIVIL WAR COLLECTION OVER TIME. OVERALL, RANGE EFFECT IS LOW, WITH A SPIKE IN 1930-1939, 
LIKELY ATTRIBUTABLE TO A COUPLE OF DOCUMENTS IN A SMALL SET OF MATERIALS FROM THAT DECADE. 
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6.5.1.4 BLEED-THROUGH 
Our analysis indicates that very few of the images studied suffer from significant bleed-through, which is a measure 
of noise in the overall image. While we do not have an objective measure for a good bleed-through score (meaning 
minimal bleed-through is present), an ideal score is zero. The majority of the 35,990 images return low bleed-through 
scores. See Chart 5. In this test, there are 76 images from the decade 1940-1949 that have high bleed-through scores 
and cause the average to spike in that decade. 

CHART 5. AVERAGE BLEED-THROUGH/NOISE IN MATERIALS FROM THE CIVIL WAR COLLECTION, BY DECADE. 

 

One caveat, however, is that in our processing, a document image is first converted into a grayscale image by the 
evaluation algorithm. Many of the pages in the collection are a yellow-hued paper that results in a dark background 
after the conversion. The presence of a dark background affects bleed-through evaluation and may result in a faulty 
evaluation. 

6.5.2 ADVANCED DIQA 
In the second iteration of DIQA, we combined elements of the original DIQA, document type differentiation, and 
document image segmentation explorations. Specifically, we measured a document image’s compactness. In this 
case, compactness represents the number of zones (i.e., text blocks, figure) in a document image and may be 
considered as an indicator of document complexity.  

To proceed, we first assessed the compactness measures obtained by two segmentation algorithms on a dataset 
with known, reliable ground-truth.  We then applied the compactness measure to minimally processed manuscript 
collections from the Civil War. Finally, we compared our measure of complexity with difficulty scores ascribed to 
materials through the Library of Congress’s By the People site, to see if we could determine a correlation between 
our measure of complexity and document difficulty scores. 

The two document segmentation algorithms used were (1) non-machine-learning, Voronoi diagram-based 
algorithm; and (2) machine-learning-based algorithm, dhSegment, used in other explorations reported here. We 
tested the two segmentation algorithms on 430 document images collected from the Europeana Newspapers 
dataset and counted the number of regions segmented by each algorithm. Then, we compared the result with the 
number of actual regions stored in the ground truth. See Table 8 and Chart 6. 
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TABLE 8. COMPARISON OF ACCURACY OF COMPACTNESS OF TWO ALGORITHMS. 

 Voronoi-based 
Segmentation 

Deep learning-based 
Segmentation 

Mean Differences 75 77 
STD Differences 97 154 

 

CHART 6. THE COMPACTNESS OF THE EUROPEANA NEWSPAPERS DATASET. 

 

Based on the mean and standard deviation of the difference between the number of zones detected by the 
algorithms and the ground truth, the compactness obtained by the non-machine-learning-based segmentation 
algorithm is slightly better than the machine-learning-based algorithm. In addition, when we looked at the number 
of zones and the compactness of the newspapers dataset, even though the number of zones detected by the two 
algorithms does not perfectly match with the number of actual zones, we observed a certain degree of similarity 
between compactness and the actual busyness of document images. 

With this understanding, we then turned to several minimally processed manuscript collections from the Civil War, 
which are featured on By the People and are part of the Civil War campaign. Specifically, we used the Veroni-based 
approach to assess the compactness of four digitized document image collections, identified as “Civil War,” “Clara 
Barton,” “Letters to Lincoln,” and “Walt Whitman.” We analyzed within collections and by year/across time. 

Three collections—Civil War, Letters to Lincoln, and Walt Whitman—show similar compactness distributions. The 
Clara Barton collection shows a thicker tail, which indicates that images in this collection tend to have a busier layout. 
Likewise, the Clara Barton collection shows notable changes in compactness across time represented in the 
collection. Our results suggest that items in the Clara Barton collections from 1862 to 1869 have more complex and 
busier layouts than those from 1850 to 1861. In the other three collections, we did not find notable compactness 
differences by time period. 
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Finally, we wondered if we might find a correlation between our compactness score and the difficulty score applied 
to an image through the By the People platform. We wondered: did the compactness, or busy-ness, of an image, 
which can be understood as a marker of complexity, correspond to images with higher difficulty scores? Ultimately, 
we could not correlate our measure of compactness with the difficulty score from By the People. 

The difficulty score itself may not match human perception of difficulty as complex, non-linear relationships exist 
among visual features. In general, image quality assessment includes both machine and human perceptions of 
quality of an image. For machine perception, quality assessment evaluates difficulties to predict or categorize an 
image for a machine. And for human perception, quality assessment evaluates difficulties in understanding and 
interpreting an image based on the visual appearance. 

6.5.3 POTENTIAL APPLICATIONS 
Much of this this exploration did not apply machine learning and instead was purely an image processing and image 
analysis exploration. We pursued it as part of this machine learning project in order grapple with which types of 
investigations require machine learning and when might other computational approaches be helpful to doing more 
with digital collections. In addition, such an exploration can facilitate future machine learning applications and 
endeavors. In cultural heritage digital libraries, administrative and descriptive metadata are common, even if the 
descriptive metadata are often limited. Various of our other explorations throughout this demonstration project, 
such as approaches to segmentation and classification, are toward enriching descriptive metadata and also have 
implications for enhanced structural metadata. As researchers begin to process large quantities of document images 
to develop robust classifiers or to develop generalizable automated systems, there is an increasing need for 
metadata about the image quality of the digitized document images, such as average intensity of an image, contrast, 
range effects, layout structure, etc., such that researchers might query and retrieve specific subsets of document 
images based on these qualities for testing. 

6.6 EXPLORATION: DOCUMENT CLUSTERING 
This exploration extended from the initial documentation segmentation exploration and applied clustering to 
document images. Drawing on our other work with ResNet and dhSegment, we wondered whether document 
images clustered together share similar visual features recognizable to human observers. For example, would page 
images with graphical content cluster? Could we discern other clustering features? Could such clusters be useful in 
decision-making, for metadata generation, or other processes? 

Two assumptions shaped this exploration. The first was that the deep visual representation of each datapoint 
contains enough feature information to be clustered. Second, in the clustered manifold, datapoints residing in the 
same neighborhood will share similar visual metadata with one another. 

This exploration proceeded in two parts. In both parts, we used dhSegment to extract high-level visual features and 
then clustered the features using t-SNE, a state-of-the-art clustering method.16 The dataset was a set of 96 page 
images from the Europeana Newspapers collection. From each of the 96 page images, we extracted a set of feature 
maps—so-called latent space—learned by a deep model, the ResNet-50 + U-Net that we trained for the document 
segmentation exploration. In this approach, the size of the latent space is calculated by the formula image width/32 
x image height/32 x 2049. 

This exploration faced two challenges from the outset. First, the sizes of the input images varied, and they could not 
be reduced to the same proportions without distorting the images and thus their visual features. The size differences 

 
16 Maaten and Hinton, “Visualizing Data Using T-SNE.” 
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were due to variation in the original dimensions of the newspapers as well as to variations introduced during the 
microform process (how much non-newspaper space was captured in the duplication process, for example). These 
differences meant that the size of our latent space was inconsistent. A second challenge for this exploration was that 
the latent space was too large. The resolution of an input image might be 1800 x 2400, meaning that the 
corresponding latent space became 1800 x 2400 x 2408. This scenario would contain redundant information and 
degrade clustering performance in both quality and computation time. To address these challenges, we performed 
dimensionality reduction recorded the intensity of features but not their spatial location.  

These reduced latent space feature maps were then clustered using t-SNE.  Ninety-six (96) datapoints in 2048-
dimensional space grouped into roughly three clusters in two-dimensional space. Once the images were clustered 
in this low-dimensional space, we visually inspected and analyzed for (1) intraclass correlation, or whether 
datapoints in the same cluster share similar visual features, and (2) interclass correlation, or whether different 
clusters show dissimilarity to each other.  

In the first part of this work, a visual inspection of sampled images from the same clusters does suggest shared visual 
features; for example, all four images in each box in Figure 15 show similar degrees of brightness and contrast. This 
result implies that there is a certain amount of intraclass correlation; images in the same cluster somewhat resemble 
each other.  

 
(A)                                                              (B)                                                                  (C) 

FIGURE 15. IMAGES FROM THREE DIFFERENT CLUSTERS. IMAGES IN THE SAME CLUSTER SHARE SIMILAR CHARACTERISTICS, WHEREAS OTHER 
CLUSTERS SHOW DIFFERENT CHARACTERISTICS. FOR EXAMPLE, IMAGES IN (A) SHOW HIGH CONTRAST AND SIMPLE LAYOUT STRUCTURE. THE 
IMAGES IN (B) SHOW A RELATIVELY GRAY APPEARANCE WITHOUT FIGURE COMPONENTS. THE IMAGES IN (C) SHOW A RELATIVELY DARKER 
APPEARANCE WITH FIGURE COMPONENTS. 

Following the first part of this exploration, we questioned whether the clustering results were simply based on the 
intensity value of the images. Thus, in the second part of this exploration, we clustered deep visual representations 
extracted from images that have been normalized to have zero mean and a unit standard deviation of intensity 
value. See Figure 16. From this second phase of the exploration, we observe two things. First, the clustering result 
using the deep visual representation excluding intensity shows a similar pattern to that of using the deep visual 
representation including intensity. This outcome suggests that the performance of our clustering approach is not 
based primarily on intensity features. Second, based on the observation that some datapoints sharing similar layout 
structures are slightly separated from each other compared to the first experiment clustering result, intensity does 
have an effect on the clustering process, even if it is not a primary basis of clustering.  
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(A)                                                              (B)                                                                  (C) 

FIGURE 16. IMAGES FROM THREE DIFFERENT CLUSTERS FOLLOWING INTENSITY VALUE NORMALIZATION. THE RESULTS SHOW SIMILAR 
CLUSTERING PATTERNS AS IN THE PREVIOUS FIGURE. 

This exploration suggests that a set of deep visual representations of document images can be mapped into a low-
dimensional space efficiently and effectively and neighboring datapoints show considerable visual similarity. This 
visual similarity is not based primarily on simple intensity features but rather on high-level visual features, such as 
layout density. We see potential in document clustering for enriched metadata as well as in using visually similar 
images for launching further study of materials within the Library of Congress and for allowing researchers/users to 
see visually similar images to those they are currently exploring.  

For future development, we recommend looking at unsupervised approaches in order to build a more generic 
clustering solution not limited to a particular document domain or corpus. We also recommend exploring more 
sophisticated approaches to reducing dimensionality than what we have adopted here, in order to retain spatial 
information. And, we imagine combining this clustering approach with the results of document image quality 
assessment and the notion of a document complexity score, in order to see if there is a correlation between image 
quality assessment, complexity, and clustering.  

7 DISCUSSION 
The explorations framed above only scratch the surface of the types of investigations to be pursued with machine 
learning and the information that can be gleaned from and about digitized materials, the collections in which they 
sit, and about organizational and institutional practices and beliefs. We knew from the outset of this demonstration 
project that scoping our work would be crucial; we were already aware of the magnitude of possibilities and potential 
investigations, whether for a short-term project such as this one or more sustained research and development. 
Nonetheless, through the above explorations, we developed a heightened awareness of the number of possibilities 
and challenges, both those social and technical, as well as of their scale. In this section, we move from the more 
specific questions and narrower areas of focus pursued in the explorations to a set of themes, ideas, and questions 
that served as a backdrop to or emerged over the course of the larger project.   

7.1 SOCIAL 
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Processing image and textual data with existing machine learning platforms and programs is increasingly accessible. 
That is not to say that doing so is exactly plug-and-play, but the technical, conceptual, and domain knowledge needed 
to simply pass data in to a machine learning pipeline and obtain some results appears lower each year. This perceived 
simplicity, however, hides significant complexity, nuance, assumptions and decision-making, and labor. 
Furthermore, this perceived simplicity has the potential to mask the implications of machine learning-generated 
knowledge, implications which range from the humorous and mundane to the profound and life-changing. 

Domains considering implementing machine learning must engage deeply and critically with the technology, what it 
does, and what it means. For cultural heritage digital libraries, now is a critical moment to grapple with 
epistemologies of machine learning and the knowledge it structures, shapes, and appears to codify. Some elements 
of these epistemological conversations may transcend domains and applications, but these conversations also must 
be rooted in the specificities of the cultural heritage sector. In particular, libraries must grapple with their historical 
foundations and practices and with the potential consequences of these practices for machine learning. Previous 
and ongoing collecting and description practices, for example, were and are colonialist, racist, hetero- and gender-
normative, and supremacist in other structural and systemic ways. These understandings are the foundation on 
which training and validation data will be created and assembled; they will become reinscribed as statements of 
truth, even as we elsewhere champion the potential of computational approaches to uncover hidden histories, 
identities, and perspectives in collections. To engage machine learning in cultural heritage must mean confronting 
these histories, committing to the hard work of acknowledgment and rectification, and not simply reproducing them 
and giving them a whole new scale of power. There should not be a future for machine learning in digital libraries 
that is not first and foremost committed to, in the words of Thomas Padilla, “responsible operations” and to all of 
the ongoing, cross-cutting work that responsible operations entail.17 

Early in this demonstration project, Meghan Ferriter framed a range of different types of machine learning 
explorations and their outcomes. These included machine learning in the Library of Congress for description, 
discovery, and delight.18 Ferriter’s framing highlights another important feature in considering machine learning for 
digital libraries. Each of these endeavors--machine learning for description, discovery, and delight—has the potential 
to help people see materials from new angles, to peruse them in alternative ways, and to begin to frame additional 
questions and ways of thinking. At the same time, each of these purposes foregrounds different values and carries 
with it a different set of requirements and responsibilities. Naming and framing such purposes can help us think 
about the requirements and responsibilities of projects with these different ends. Building on Ferriter’s “three Ds,” 
we add as well “deployment” and “debate/dialogue.” These categories need not be mutually exclusive, nor do we 
imagine a prescription for how machine learning in any of these realms should proceed. Instead, as a community of 
practice and as communities of researchers, what do we expect from projects and applications that proceed with 
these—and other—purposes in mind? Perhaps most critically, for any project that is about large-scale deployment, 
or a deployment of machine learning that may have significant implications for reasons beyond scale, what 
expectations do we hold as to what such projects must do, consider, make transparent? What contexts must we be 
able to see and understand?  

7.2 TECHNICAL 
Across the above explorations, several high-level themes and questions routinely surfaced related to what we might 
consider technical aspects of supporting and pursuing machine learning in the Library of Congress.  

 
17 Padilla, Responsible Operations. 
18 Ferriter, et al., Kick-off meeting. 
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The first is that on a basic level, computational access to the Library of Congress’s digital objects is relatively 
straightforward. We were able to retrieve significant data—image, textual—via the Library’s application 
programming interface and other bulk download options. This collections as data approach is an important layer for 
machine learning.  

Even with this relatively straightforward baseline access to the digital materials, however, we depended on our 
inside access to people at the Library, made possible through this demonstration project, in order to make sense of 
some of the data. For example, what does the difficulty score encoded in the Beyond Words JSON data mean? How 
was it determined and by whom? How do the coordinates and size information in Chronicling America OCR.xml files 
correspond with size and coordinate information in Beyond Words? Are there existing values for digitization source 
type for digital collections and items? Such questions and challenges may suggest the need for additional levels of 
documentation and/or to new types of reference support needed in the Library of Congress as it facilitates emergent 
areas of research with its digital collections. We anticipate that the Library’s Mellon-funded project, Computing 
Cultural Heritage in the Cloud, will further advance thinking and conversations on these topics. 

Basic, computational access to digital collections ticks one box in the roadmap toward machine learning. Machine 
learning approaches also require accurate ground truth data from which to learn and validate. In the case of the 
explorations framed above, even when it seemed we could utilize existing Library of Congress data—generated by 
in-house experts or members of the public through crowdsourcing—as ground truth, ground truth data proved 
challenging. Ultimately, we had to create ground truth sets ourselves or turn to externally available datasets that 
provided the type/nature of ground truth information needed. Sometimes, we had to create these ground truth sets 
because the data did not otherwise exist as verifiable data, as in the case of the handwritten-typed-mixed project, 
for example. In other cases, the nature of the ground truth did not fit with our proposed approach, as in the 
difference between the rectangular bounding boxes of the Beyond Words project and the shape-fitting 
segmentation of our efforts in document segmentation and graphical content extraction. This reality about ground 
truth data was not wholly unexpected and is not a criticism of the Library’s efforts or of individuals’ labor and effort 
over time. What it may suggest, however, is that the bibliographic information and collections-centered metadata 
previously pursued in libraries is a limited vision of what will be needed for machine learning applications and new 
areas of research. 

The lack of robust, varied, sizable, well-documented ground truth is a significant technical challenge to the 
development of machine learning approaches for cultural heritage. Cultural heritage digital libraries need ground 
truth data particular to their types of materials and also relevant to the type and variety of questions information 
professionals, researchers of various domains, and other users wish to pursue about these materials. In broad 
strokes, machine learning models developed and trained on other types of ground truth sets skew toward the 
contemporary and born-digital and are transferable to digitized historical materials only to a point. Maringanti, 
Samarakoon, and Zhu report, for example, that the current learning models for photograph description have been 
developed on photographs of the modern world and do not fit well with historical photographs in a research library’s 
collections.19 Likewise, historical materials may introduce additional challenges of noise and quality, whether due to 
material conditions, legacies of care, intervening technological processes, and more. Furthermore, datasets for 
competitions that focus on historical documents are relatively small, they are not comprehensive of the range of 
materials in collections as large and diverse as those in cultural heritage institutions, the statements about ground 
truth represented in them are typically narrow in application, and such ground truth sets are often siloed. 

 
19 Maringanti, Samarakoon, and Zhu, “Machine Learning Meets Library Archives.” 
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The challenges around ground truth connect with other questions that surfaced across many of our explorations. 
These questions included, how might data created by users via the Library of Congress’s crowdsourcing projects be 
used as ground truth data? What size of ground truth and training sets are necessary for different purposes? Are 
ground truth data created for one purpose transferrable for other purposes? What happens when we attempt to 
extrapolate from ground truth created for one purpose to another? Or when there isn’t a direct match between 
ground truth data and output data? 

Likewise, as a backdrop to a number of the explorations, we wondered about the interplay of human expertise and 
processes and machine knowledge and processes. What human-computer processes might be viably and validly 
adopted and operationalized as, say, part of a daily routine? What human-computer approaches are viable and valid 
in terms of effectiveness and efficiency in order to address issues of scalability? What value might there be in cross-
learning, loop-learning, and cross-processing, where machines learn from humans, humans respond to and adapt 
understanding based on machine learning, and this looped learning informs processes and decision-making? Rather 
than seeing machine learning as an end, how can the Library of Congress embed and value critique across such a 
system, so that both human and machine assumptions are routinely tested? What are the foundational data and 
metadata needed and required to facilitate cross-learning and cross-processing? What is the place for data-science 
paradigms, where problems or issues are derived bottom-up—are surfaced through the collections and feature 
analysis—rather than top-down? We would be premature and ill-equipped to answer such questions based on only 
the explorations above, but we highlight them here as recurrent questions and provocations over the course of the 
explorations. 

7.3 SOCIAL-TECHNICAL 
In separating the technical from the social above, our intention is not to suggest a binary, a neat division, or a siloing 
of responsibility. 20 There is a critical interplay between the social and the technical in machine learning, not least 
because machine learning has significant social consequences. At best, machine learning will be incomplete without 
the social and cannot proceed without the technical, and technology cannot be divorced from the societies and 
individuals that develop it or the social realities it constructs. Our distinction above is largely one of convenience, 
and the lines between the social and technical blur quickly in our recommendations. 

8 RECOMMENDATIONS 
As the largest library in the world and with the ambitious, forward-looking digital strategy announced in 2019, the 
Library of Congress is uniquely situated to play a leadership role in advancing the theory and practice of machine 
learning in the cultural heritage sector. With this leadership role in mind, we propose two top-level 
recommendations for the Library of Congress’s efforts around machine learning and as it moves forward in its work 
to “throw open the treasure chest,” “connect,” and “invest in our future.”21 The first is that the Library should focus 
the weight of its machine learning efforts and energies on social and technical infrastructures for the development 
of machine learning in cultural heritage organizations, research libraries, and digital libraries. Second, we 
recommend that the Library invest in continued, ongoing, intentional explorations and investigations of particular 
machine learning applications to its collections. 

 
20 Padilla refers to the “technical, organizational, and social challenges” as multiple, integral facets of a machine 
learning agenda for libraries. See Responsible Operations, p. 6. 
21 Library of Congress, “Digital Strategy for the Library of Congress.” 
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What we do not recommend at this particular moment in time is the broad application of machine learning to the 
Library’s digital collections with the purpose of broadly making claims about the materials or restructuring access to 
them. On a very practical level, such broad application would be premature due to the challenges with ground truth 
data and validation and considering the many critical conversations yet to take place around whose, and what, 
human knowledge becomes the basis of machine learning. We advise against a “more product, less process” 
approach to machine learning applications. The ways in which machine learning-generated knowledge stands to 
influence decision-making and codify particular understanding are too profound and too powerful to adopt such an 
approach, or make such a commitment, at this nascent stage. 

Below, we provide more detail about the two top-level recommendations and offer several short- and medium-term 
recommendations in support of these top-level recommendations. Each of these top-level recommendations 
directly map to the three goals of the “Digital Strategy for the Library of Congress.” In addition, while we hope the 
role and importance of people will be clear in everything that follows, we want to say directly here: people are 
central to all of the recommendations that follow. None of the recommendations imagine a library without 
information professionals and experts. Any future for machine learning in libraries will require an investment in 
people with many types of expertise, and a best-case future for machine learning in cultural heritage organizations 
is that the people who work in them are able to bring even more of their experience and expertise to bear. 

8.1 FOCUS THE WEIGHT OF THE LIBRARY’S MACHINE LEARNING EFFORTS AND ENERGIES ON 

SOCIAL AND TECHNICAL INFRASTRUCTURES FOR THE DEVELOPMENT OF MACHINE LEARNING 

IN CULTURAL HERITAGE ORGANIZATIONS, RESEARCH LIBRARIES, AND DIGITAL LIBRARIES.  
We recommend that the Library dedicate itself to a range of infrastructure projects that will create a strong 
foundation for machine learning in the profession and field, particularly as applied to historical cultural heritage 
materials. The paramount machine learning need within the cultural heritage sector at this time is the development 
of infrastructure. 22  These infrastructures include educative infrastructures, through which cultural heritage 
professionals develop further literacy in computational thinking and methods, particularly through the lens of critical 
information studies. The needed infrastructures also include platforms for conversations—and the pursuant 
conversations themselves—about the language of description and the corresponding social and cultural values 
signaled in that language, as well as about who we engage in these processes and applications. Likewise, the needed 
infrastructures include pathways for gathering and delivering machine learning models and verifiable learning data 
that extend beyond individual projects, as well as for bringing together cross-domain researchers toward the 
purpose of machine learning for cultural heritage.  

This top-level recommendation, that the Library focus the weight of its energies on social and technical 
infrastructures, connects with many of the goals in the Library’s digital strategy. This recommendation aligns 
particularly well with the Library’s interests in maximizing use of content; supporting emerging styles of research; 
welcoming other voices; driving momentum in our communities; cultivating an innovation culture; ensuring enduring 
access to content; and building toward the horizon. (See Table 9, which maps our recommendations to the Library 
of Congress digital strategy.) 

Under this broad umbrella, we propose several more specific recommendations, through which we believe the 
Library of Congress could have the most immediate and most significant impact, drawing on both its status and 
position as well as existing areas of expertise. We have not attempted to be exhaustive in these recommendations; 

 
22 Padilla has framed this need as a research agenda for libraries, including the areas of machine learning, data 
science, and artificial intelligence. See Padilla for an even more extensive list of needs. 
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instead we emphasize activities that we consider critical or high priority given community needs, the Library’s 
existing expertise/leadership, and opportunity. To that end, we recommend that the Library of Congress should: 

§ Develop a statement of values or principles that will guide how the Library of Congress pursues the use, 
application, and development of machine learning for cultural heritage. 

§ Create and scope a machine learning roadmap for the Library that looks both internally to the Library of 
Congress and its needs and goals and externally to the larger cultural heritage and other research 
communities. 

§ Focus efforts on developing ground truth sets and benchmarking data and making these easily available. 

In the following subsections, we describe these recommendations in more detail. We also map each 
recommendation to areas of investigation and challenge areas outlined in Responsible Operations. (See Table 10, 
which maps each recommendation to areas of investigation and challenge areas outlined in Responsible Operations.) 

8.1.1 DEVELOP A STATEMENT OF VALUES OR PRINCIPLES THAT WILL GUIDE HOW THE LIBRARY OF CONGRESS 

PURSUES THE USE, APPLICATION, AND DEVELOPMENT OF MACHINE LEARNING FOR CULTURAL 

HERITAGE. 
The Library of Congress should articulate a statement of values or principles with regard to the adoption, use, and 
development of machine learning. Such a statement can address machine learning and cultural heritage broadly—
what is the vision of machine learning for cultural heritage that Library of Congress aspires to—and also frame the 
values and principles under which the Library of Congress will pursue the development and application of machine 
learning. If units within the Library seek to apply machine learning to collections, under what principles and values 
should that work proceed? What are the expectations around transparency and explainability, both for internal and 
external audiences, for example? Or around confronting problematic historical knowledge and knowledge structures 
in training data? The crafting of such a statement of values or principles is an opportunity for developing increased 
literacy and fluency around machine learning, if the Library engages its staff broadly in the developing and education 
around such a statement. 

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Committing to Responsible Operations 
o Managing Bias 
o Transparency, Explainability, Accountability 
o Distributed Data Science Fluency 

8.1.2 CREATE AND SCOPE A MACHINE LEARNING ROADMAP FOR THE LIBRARY THAT LOOKS BOTH INTERNALLY 

TO THE LIBRARY OF CONGRESS AND ITS NEEDS AND GOALS AND EXTERNALLY TO CULTURAL HERITAGE 

AND OTHER COMMUNITIES OF RESEARCH AND PRACTICE. 
For this demonstration project, we scoped our explorations above as a response to the seemingly endless array of 
opportunities for applying machine learning to the Library of Congress’s digital collections. As the Library of Congress 
continues to explore the intersection of machine learning and digital cultural heritage, the Library likewise will need 
to focus and scope its efforts. Such scoping and an overall roadmap are necessary for the Library to influence and 
have a strong impact on the development of machine learning in cultural heritage organizations. 

The roadmap should be informed by the statement of values recommended in 4.1.1. In addition, other 
recommendations in this report may be points on that roadmap. The investigation areas in Responsible Operations 
may provide a useful framework for such a roadmap. What are the Library’s goals and objectives in each of the 
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investigation areas? Will it pursue all of the areas or prioritize particular areas? With regard to the Library’s goals 
and objectives, are there investigations areas that the Library would add? Do recommendations from that report 
offer ways of thinking about and structuring a longer-term roadmap? 

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Committing to Responsible Operations 
o Transparency, Explainability, Accountability 
o Distributed Data Science Fluency 

§ Workforce Development 
o Investigating Core Competencies 
o Committing to Internal Talent 

§ Any/all of the investigation and challenge areas that the Library of Congress would choose to prioritize in 
its own roadmap and plan 

8.1.3 FOCUS EFFORTS ON DEVELOPING GROUND TRUTH SETS AND BENCHMARKING DATA AND MAKING THESE 

EASILY AVAILABLE. 
One key way for the Library of Congress to advance machine learning for cultural heritage is creating and distributing 
ground truth sets drawn from its diverse digital collections and making available benchmarking data for 
computational approaches on those sets. Ground truth data and benchmarks will allow researchers—including 
cultural heritage professionals, computer scientists, and developers—to focus their energies and research, 
development, and analysis, rather than on creating one-off, niche datasets. The availability of ground truth and 
benchmarks also create the possibility of more rapid development around particular problem domains.  

Creating and distributing ground truth sets will foreground the significance of metadata, including technical, 
structural, and descriptive. For descriptive metadata, we recommend distinguishing between at least two types of 
descriptive metadata, one that is descriptive of the content of the historical materials, including metadata about 
what is depicted and represented as well as how, and another that is descriptive of the properties of the image, 
including features such as digitization source, contrast, skew, noise, range effect, complexity (or a difficulty measure 
of some sort). Underscoring this idea is that the ground truth sets will have interest to researchers of many disciplines 
and research interests (those interested in the materials themselves as cultural objects and those interested in them 
for their value to computer science development, for example). 

Within this recommendation, we offer two sub-recommendations: 

8.1.3.1 DEVELOPMENT OF DOCUNET 
We recommend the Library of Congress develop, or partner in developing, DocuNet, an image database of 
historical documents with accompanying taxonomic and typological metadata. DocuNet would be valuable 
to researchers in library and related sectors and also to information science and computer science 
researchers. We see it as one effective way to encourage additional machine learning researchers and those 
interested in computer vision, among other domains, to delve into historical document analysis. Features 
or characteristics important to a DocuNet are ground-truth (e.g., document types, coordinates of article 
regions, etc.); openness; diversity and balance (e.g., different document types should be comprehensively 
covered and equally distributed); and clear objectives (e.g., segmentation, classification, clustering, etc.). 

8.1.3.2 PURSUIT OF LOW-COST GROUND-TRUTHING 
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We also recommend that the Library explore options for, and contribute to efforts to advance, low-cost 
ground-truthing. Having subject matter experts hand-label data is expensive and is a barrier to machine 
learning, whether in the Library of Congress or on external research teams. Importantly, by low-cost 
ground-truthing, we do not mean exploitative labor such as through Mechanical Turk. Instead, the Library 
could pursue heuristics-based models. In this form of ground-truthing, computers learn the heuristics that 
are created by humans, and then computers label data using the heuristic rules, constraints, distributions, 
and/or variances of the dataset. Such an approach may be less accurate than item-by-item expert-labeled 
ground truth, but it may still be able to produce effective machine learning systems. While the potential for 
low-cost ground-truthing of this sort remains to be seen, we believe it is a worthwhile area of inquiry as 
part of a larger commitment to support for machine learning infrastructure.  

Recommendation 4.2.3 and its corresponding sub-recommendations map to the following investigation areas and 
challenges in Responsible Operations: 

§ Committing to Responsible Operations 
o Managing Bias 

§ Description and Discovery 
o Enhancing Description at Scale 

§ Shared Methods and Data 
o Shared Development and Distribution of Training Data 

8.2 INVEST IN CONTINUED, ONGOING, INTENTIONAL EXPLORATIONS AND INVESTIGATIONS OF 

PARTICULAR MACHINE LEARNING APPLICATIONS TO ITS COLLECTIONS.  
Much as it did through this demonstration project and other activities (its Innovator-in-Residence program, for 
example), the Library should continue to invest in explorations and investigations of particular applications of 
machine learning on its collections, with an eye toward both internal operations and impacts on external users. 
Continued explorations, tests, and experiments will prove crucial to the ongoing inquiry needed to more fully 
evaluate the potential of machine learning for digital libraries. We recommend that such explorations are framed 
and understood as intellectual endeavors rather than being large output-driven and are collaborations among 
computer scientists, developers, and information professionals, drawing in other participants and stakeholders as 
appropriate to the project. We also encourage the Library of Congress to be careful in the presentation of machine 
learning generated data, particularly when that data might be read or experienced by others as uncontested 
knowledge or fact about cultural heritage materials, and also with care and concern about what is absent as well as 
what is present.  

This recommendation, that the Library invest in continued, ongoing, intentional explorations and investigations of 
particular machine learning applications to its collections, connects with many of the goals in the Library’s digital 
strategy. These include, in particular, supporting emerging styles of research, welcoming other voices; driving toward 
momentum in our communities; cultivating an innovation culture; and building toward the horizon. 

Again, we propose several more specific recommendations, through which we believe the Library of Congress could 
have the most immediate and most significant impact, drawing on both its status and position as well as existing 
areas of expertise. We have not attempted to be exhaustive in these recommendations; instead we emphasize 
activities that we consider critical or high priority given community needs, the Library’s existing expertise/leadership, 
and opportunity. To that end, we recommend that the Library of Congress should: 
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§ Join the Library of Congress’s emergent efforts in machine learning with its existing expertise and leadership 
in crowdsourcing. Combine these areas as “informed crowdsourcing” as appropriate. 

§ Sponsor challenges for teams to create additional metadata for digital collections in the Library of Congress. 
As part of these challenges, require teams to engage across a range of social and technical questions and 
problem areas. 

§ Continue to create and support opportunities for researchers to partner in substantive ways with the 
Library of Congress on machine learning explorations. 

In the following subsections, we describe these recommendations in more detail. We also map each 
recommendation to areas of investigation and challenge areas outlined in Responsible Operations. 

8.2.1 JOIN THE LIBRARY OF CONGRESS’S EMERGENT EFFORTS IN MACHINE LEARNING WITH ITS EXISTING 

EXPERTISE AND LEADERSHIP IN CROWDSOURCING. COMBINE THESE AREAS AS “INFORMED 

CROWDSOURCING” AS APPROPRIATE. 
Through its By the People application and campaigns, as well as through earlier efforts, the Library of Congress has 
established a strong portfolio of crowdsourcing experience. Through the Library of Congress Labs, the Library also 
has strong leadership in crowdsourcing, including technical development for crowdsourcing, and in designing and 
developing challenges. We see significant potential in bringing together machine learning and crowdsourcing efforts, 
as an effort to combine an existing strength of the Library with an emergent area of interest and impact. Such a 
joining of efforts would allow the Library of Congress to make even greater use of crowdsourced information, toward 
challenges of scalability. Doing so also creates the opportunity for greater conceptual understanding and practical 
development. For example, joining these areas, even in a limited way, would allow the Library to research cross-
learning and looped learning. Such a combined approach has the potential to improve machine learning models, 
particularly in applications that require a higher-level of understanding. In a hypothetical project, members of the 
crowd might receive labeled data from a model; users then revise the labels, and the model improves its predictions 
based on those revisions. With each successive iteration, the model improves further. 

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Description and Discovery 
o Enhancing Description at Scale 

§ Workforce Development 
o Committing to Internal Talent 

§ Shared Methods and Data 
o Shared Development and Distribution of Training Data 

8.2.2 SPONSOR CHALLENGES FOR TEAMS TO CREATE ADDITIONAL METADATA FOR DIGITAL COLLECTIONS IN 

THE LIBRARY OF CONGRESS THROUGH MACHINE LEARNING. AS PART OF THESE CHALLENGES, REQUIRE 

TEAMS TO ENGAGE ACROSS A RANGE OF SOCIAL AND TECHNICAL QUESTIONS AND PROBLEM AREAS. 
The Library has a history of creating and sponsoring challenges, such as the Congressional Data Challenge and 
challenges focused on Chronicling America data. We recommend that the Library build on this prior experience to 
organize and offer new sponsored challenge opportunities about machine-learning generated metadata. Such 
explorations have the potential to move forward a range of critical conversations and needs. The purpose of this 
recommendation is multipart: (1) To see what types of metadata researchers/teams might produce. What metadata 
is of interest to them? (2) To encourage the creation of particular types of metadata, including through an expanded 
sense of what descriptive metadata might include and what is of descriptive value (e.g., metadata that are 
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representational of the content and metadata that are descriptive of features such as noisiness, quality, and so on); 
(3) To anchor critical engagement with core problems, such as of bias in the data and in what may be produced, as 
inseparable from technical development; and (4) To emphasize, underscore, and champion that cross-disciplinary, 
community-centered and community-engaged development is required for responsible machine learning.  

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Committing to Responsible Operations 
o Managing Bias 
o Transparency, Explainability, and Accountability 

§ Description and Discovery 
o Enhancing Description at Scale 

§ Shared Methods and Data 
o Shared Development and Distribution of Methods 

§ Sustaining Interprofessional and Interdisciplinary Collaboration 

8.2.3 CONTINUE TO CREATE AND SUPPORT OPPORTUNITIES FOR RESEARCHERS TO PARTNER IN SUBSTANTIVE 

WAYS WITH THE LIBRARY OF CONGRESS ON MACHINE LEARNING EXPLORATIONS. 
Even if the Library were able to dedicate many staff members to a full-time focus on machine learning, the challenges 
of machine learning for cultural heritage are large and significant enough that the Library will need to continue its 
collaborations with external researchers. Such opportunities need not be sponsored by the Library itself, though 
they could be. However they are facilitated, we recommend that the Library see formal collaborations as central to 
taking this machine learning work forward. As researchers who have worked with Library of Congress data for many 
years—and over which time we have had many positive and helpful interactions with Library staff, who probably 
went well beyond the call of duty in their help to us—we benefitted in significant ways from the additional levels of 
access to Library staff this this particular demonstration project and the formal collaboration afforded. 
Understandably, the Library cannot support every machine learning endeavor at this level or engage with every 
research team in this way, and there will be challenges of scale. Nonetheless, we recommend that some measure 
and shape of formal collaboration opportunities be part of the Library’s support for both machine learning 
explorations and larger social and technical infrastructures. 

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Shared Methods and Data 
o Shared Development and Distribution of Methods 

§ Sustaining Interprofessional and Interdisciplinary Collaboration 
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TABLE 9. INFRASTRUCTURE AND APPLICATION RECOMMENDATIONS MAPPED TO ELEMENTS OF THE LIBRARY OF CONGRESS'S DIGITAL 
STRATEGY. 

Digital Strategies Recommendations on Infrastructure Recommendations on ML 
Applications 

maximizing use of content ü  
 

supporting emerging styles of research ü  ü  

welcoming other voices ü  ü  

driving momentum in our communities ü  ü  

cultivating an innovation culture ü  ü  

ensuring enduring access to content ü  
 

building toward the horizon ü  ü  
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TABLE 10. RECOMMENDATIONS MAPPED TO AREAS OF INVESTIGATION AND CHALLENGE AREAS OUTLINED IN PADILLA'S RESPONSIBLE 
OPERATIONS. 

Strategies Sub-Strategies Statement 
of Vision 

Roadmap 
of ML 

Ground-
Truthing & 
Benchmarking 

ML + 
Crowd-
sourcing 
Efforts 

Sponsoring 
Challenges 

Research 
Partnerships 

Committing to 
Responsible 
Operations 

Managing Bias ü   ü   ü   
 

ü   
 

Transparency, 
Explainability, 
Accountability 

ü  ü  
  

ü  
 

Distributed Data 
Science Fluency 

ü  ü  
  

  
 

Workforce 
Development 

Investigating 
Core 
Competencies 

 
ü  

 
ü  

  

Committing to 
Internal Talent 

 
ü  

    

Description & 
Discovery 

Enhancing 
Description at 
Scale 

  
ü  ü  ü  

 

Shared 
Methods and 
Data 

Shared 
Development 
and Distribution 
of Training Data 

  
ü  ü      

Shared 
Development 
and Distribution 
of Methods 

    
ü ü 

Sustaining Interprofessional & 
Interdisciplinary Collaboration 

    
ü  ü  

 

  



 39 

9 CONCLUSION 
There is rich potential for machine learning to augment the description and accessibility of materials in the Library 
of Congress, to inform understanding of collections and choices about how materials are processed and by whom, 
and to address issues of scale. The Library of Congress is in a remarkable position to advance machine learning for 
cultural heritage organizations, through its size, the diversity of its collections, and its commitment to digital strategy. 
This demonstration project—via its explorations, discussion, and recommendations—has shown the potential of 
machine learning toward a variety of goals and use cases, and it has argued that the technology itself will not be the 
hardest part of this work. The hardest part will be the myriad challenges to undertaking this work in ways that are 
socially and culturally responsible, while also upholding responsibility to make the Library’s materials available in 
timely and accessible ways.  
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